NAME

glDrawPixels - write a block of pixels to the frame buffer

C SPECIFICATION

void ggllDDrraawwPPiixxeellss( GLsizei _w_i_d_t_h,
                   GLsizei _h_e_i_g_h_t,
                   GLenum _f_o_r_m_a_t,
                   GLenum _t_y_p_e,
                   const GLvoid _*_p_i_x_e_l_s )

delim $$

PARAMETERS

_w_i_d_t_h, _h_e_i_g_h_t
Specify the dimensions of the pixel rectangle to be written into the frame buffer.
_f_o_r_m_a_t
Specifies the of the pixel data. Symbolic constants GGLL__CCOOLLOORR__IINNDDEEXX, GGLL__SSTTEENNCCIILL__IINNDDEEXX, GGLL__DDEEPPTTHH__CCOOMMPPOONNEENNTT, GGLL__RRGGBB, GGLL__BBGGRR, GGLL__RRGGBBAA, GGLL__BBGGRRAA, GGLL__RREEDD, GGLL__GGRREEEENN, GGLL__BBLLUUEE, GGLL__AALLPPHHAA, GGLL__LLUUMMIINNAANNCCEE, and GGLL__LLUUMMIINNAANNCCEE__AALLPPHHAA are accepted.
_t_y_p_e
Specifies the data type for _p_i_x_e_l_s. Symbolic constants GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE, GGLL__BBYYTTEE, GGLL__BBIITTMMAAPP, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT, GGLL__SSHHOORRTT, GGLL__UUNNSSIIGGNNEEDD__IINNTT, GGLL__IINNTT, GGLL__FFLLOOAATT, GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__33__33__22, GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__22__33__33__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__55__55__11, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__11__55__55__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__1100__1100__1100__22, and GGLL__UUNNSSIIGGNNEEDD__IINNTT__22__1100__1100__1100__RREEVV are accepted.
_p_i_x_e_l_s
Specifies a pointer to the pixel data.

DESCRIPTION

ggllDDrraawwPPiixxeellss reads pixel data from memory and writes it into the frame buffer
relative to the current raster position, provided that the raster position is valid. Use
ggllRRaasstteerrPPooss to set the current raster position; use ggllGGeett with argument GGLL__CCUURRRREENNTT__RRAASSTTEERR__PPOOSSIITTIIOONN__VVAALLIIDD to determine if the specified raster position is valid, and ggllGGeett with argument GGLL__CCUURRRREENNTT__RRAASSTTEERR__PPOOSSIITTIIOONN to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the pixel data before it is placed in the frame buffer. These parameters are set with four commands: ggllPPiixxeellSSttoorree, ggllPPiixxeellTTrraannssffeerr, ggllPPiixxeellMMaapp, and ggllPPiixxeellZZoooomm. This reference page describes the effects on ggllDDrraawwPPiixxeellss of many, but not all, of the parameters specified by these four commands.

Data is read from _p_i_x_e_l_s as a sequence of signed or unsigned bytes, signed or unsigned shorts, signed or unsigned integers, or single-precision floating-point values, depending on _t_y_p_e. When _t_y_p_e is one of GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE, GGLL__BBYYTTEE, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT, GGLL__SSHHOORRTT, GGLL__UUNNSSIIGGNNEEDD__IINNTT, GGLL__IINNTT, or GGLL__FFLLOOAATT each of these bytes, shorts, integers, or floating-point values is interpreted as one color or depth component, or one index, depending on _f_o_r_m_a_t. When _t_y_p_e is one of GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__33__33__22, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__55__55__11, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88, GGLL__UUNNSSIIGGNNEEDD__IINNTT__1100__1100__1100__22, each unsigned value is interpreted as containing all the components for a single pixel, with the color components arranged according to _f_o_r_m_a_t. When _t_y_p_e is one of GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__22__33__33__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__11__55__55__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__22__1100__1100__1100__RREEVV, each unsigned value is interpreted as containing all color components, specified by _f_o_r_m_a_t, for a single pixel in a reversed order. Indices are always treated individually. Color components are treated as groups of one, two, three, or four values, again based on _f_o_r_m_a_t. Both individual indices and groups of components are referred to as pixels. If _t_y_p_e is GGLL__BBIITTMMAAPP, the data must be unsigned bytes, and _f_o_r_m_a_t must be either GGLL__CCOOLLOORR__IINNDDEEXX or GGLL__SSTTEENNCCIILL__IINNDDEEXX. Each unsigned byte is treated as eight 1-bit pixels, with bit ordering determined by GGLL__UUNNPPAACCKK__LLSSBB__FFIIRRSSTT (see ggllPPiixxeellSSttoorree).

_w_i_d_t_h$~ times ~$_h_e_i_g_h_t pixels are read from memory, starting at location _p_i_x_e_l_s. By default, these pixels are taken from adjacent memory locations, except that after all _w_i_d_t_h pixels are read, the read pointer is advanced to the next four-byte boundary. The four-byte row alignment is specified by ggllPPiixxeellSSttoorree with argument GGLL__UUNNPPAACCKK__AALLIIGGNNMMEENNTT, and it can be set to one, two, four, or eight bytes. Other pixel store parameters specify different read pointer advancements, both before the first pixel is read and after all _w_i_d_t_h pixels are read. See the ggllPPiixxeellSSttoorree reference page for details on these options.

The _w_i_d_t_h$~ times ~$_h_e_i_g_h_t pixels that are read from memory are each operated on in the same way, based on the values of several parameters specified by ggllPPiixxeellTTrraannssffeerr and ggllPPiixxeellMMaapp. The details of these operations, as well as the target buffer into which the pixels are drawn, are specific to the of the pixels, as specified by _f_o_r_m_a_t. _f_o_r_m_a_t can assume one of 13 symbolic values:

GGLL__CCOOLLOORR__IINNDDEEXX
Each pixel is a single value, a color index. It is converted to fixed-point , with an unspecified number of bits to the right of the binary point, regardless of the memory data type. Floating-point values convert to true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or 1.
Each fixed-point index is then shifted left by GGLL__IINNDDEEXX__SSHHIIFFTT bits
and added to GGLL__IINNDDEEXX__OOFFFFSSEETT. If GGLL__IINNDDEEXX__SSHHIIFFTT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result.
If the GL is in RGBA mode,
the resulting index is converted to an RGBA pixel with the help of the GGLL__PPIIXXEELL__MMAAPP__II__TTOO__RR, GGLL__PPIIXXEELL__MMAAPP__II__TTOO__GG, GGLL__PPIIXXEELL__MMAAPP__II__TTOO__BB, and GGLL__PPIIXXEELL__MMAAPP__II__TTOO__AA tables. If the GL is in color index mode, and if GGLL__MMAAPP__CCOOLLOORR is true, the index is replaced with the value that it references in lookup table GGLL__PPIIXXEELL__MMAAPP__II__TTOO__II. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with $2 sup b -1$, where $b$ is the number of bits in a color index buffer.
The GL then converts the resulting indices or RGBA colors to fragments
by attaching the current raster position _z coordinate and texture coordinates to each pixel, then assigning $x$ and $y$ window coordinates to the $n$th fragment such that

$x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width"$

$y sub n ~=~ y sub r ~+~ n ^/^ "width" ~ $

where ($x sub r , y sub r$) is the current raster position.
These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GGLL__SSTTEENNCCIILL__IINNDDEEXX
Each pixel is a single value, a stencil index. It is converted to fixed-point , with an unspecified number of bits to the right of the binary point, regardless of the memory data type. Floating-point values convert to true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or 1.
Each fixed-point index is then shifted left by GGLL__IINNDDEEXX__SSHHIIFFTT bits,
and added to GGLL__IINNDDEEXX__OOFFFFSSEETT. If GGLL__IINNDDEEXX__SSHHIIFFTT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If GGLL__MMAAPP__SSTTEENNCCIILL is true, the index is replaced with the value that it references in lookup table GGLL__PPIIXXEELL__MMAAPP__SS__TTOO__SS. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with $2 sup b -1$, where $b$ is the number of bits in the stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the $n$th index is written to location

$x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width"$

$y sub n ~=~ y sub r ~+~ ~ n / "width" ~ $

where ($x sub r , y sub r$) is the current raster position.
Only the pixel ownership test, the scissor test, and the stencil writemask affect these write operations.
GGLL__DDEEPPTTHH__CCOOMMPPOONNEENNTT
Each pixel is a single-depth component. Floating-point data is converted directly to an internal floating-point with unspecified precision. Signed integer data is mapped linearly to the internal floating-point such that the most positive representable integer value maps to 1.0, and the most negative representable value maps to -1.0. Unsigned integer data is mapped similarly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point depth value is then multiplied by GGLL__DDEEPPTTHH__SSCCAALLEE and added to GGLL__DDEEPPTTHH__BBIIAASS. The result is clamped to the range [0,1].
The GL then converts the resulting depth components to fragments
by attaching the current raster position color or color index and texture coordinates to each pixel, then assigning $x$ and $y$ window coordinates to the $n$th fragment such that

$x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width"$

$y sub n ~=~ y sub r ~+~ ~ n / "width" ~ $

where ($x sub r , y sub r$) is the current raster position.
These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GGLL__RRGGBBAA
GGLL__BBGGRRAA
Each pixel is a four-component group: for GGLL__RRGGBBAA, the red component is first, followed by green, followed by blue, followed by alpha; for GGLL__BBGGRRAA the order is blue, green, red and then alpha. Floating-point values are converted directly to an internal floating-point with unspecified precision. Signed integer values are mapped linearly to the internal floating-point such that the most positive representable integer value maps to 1.0, and the most negative representable value maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned integer data is mapped similarly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point color values are then multiplied by GGLL__cc__SSCCAALLEE and added to GGLL__cc__BBIIAASS, where _c is RED, GREEN, BLUE, and ALPHA for the respective color components. The results are clamped to the range [0,1].
If GGLL__MMAAPP__CCOOLLOORR is true,
each color component is scaled by the size of lookup table GGLL__PPIIXXEELL__MMAAPP__cc__TTOO__cc, then replaced by the value that it references in that table. _c is R, G, B, or A respectively.
The GL then converts the resulting RGBA colors to fragments
by attaching the current raster position _z coordinate and texture coordinates to each pixel, then assigning $x$ and $y$ window coordinates to the $n$th fragment such that

$x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width"$

$y sub n ~=~ y sub r ~+~ ~ n / "width" ~ $

where ($x sub r , y sub r$) is the current raster position.
These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GGLL__RREEDD
Each pixel is a single red component. This component is converted to the internal floating-point in the same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with green and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__GGRREEEENN
Each pixel is a single green component. This component is converted to the internal floating-point in the same way the green component of an RGBA pixel is. It is then converted to an RGBA pixel with red and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__BBLLUUEE
Each pixel is a single blue component. This component is converted to the internal floating-point in the same way the blue component of an RGBA pixel is. It is then converted to an RGBA pixel with red and green set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__AALLPPHHAA
Each pixel is a single alpha component. This component is converted to the internal floating-point in the same way the alpha component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green, and blue set to 0. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__RRGGBB
GGLL__BBGGRR
Each pixel is a three-component group: red first, followed by green, followed by blue; for GGLL__BBGGRR, the first component is blue, followed by green and then red. Each component is converted to the internal floating-point in the same way the red, green, and blue components of an RGBA pixel are. The color triple is converted to an RGBA pixel with alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__LLUUMMIINNAANNCCEE
Each pixel is a single luminance component. This component is converted to the internal floating-point in the same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GGLL__LLUUMMIINNAANNCCEE__AALLPPHHAA
Each pixel is a two-component group: luminance first, followed by alpha. The two components are converted to the internal floating-point in the same way the red component of an RGBA pixel is. They are then converted to an RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to the converted alpha value. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.

The following table summarizes the meaning of the valid constants for the _t_y_p_e parameter:

center;
lb lb
l l.
_
Type               Corresponding Type
_
GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE   unsigned 8-bit integer
GGLL__BBYYTTEE            signed 8-bit integer
GGLL__BBIITTMMAAPP          single bits in unsigned 8-bit integers
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT  unsigned 16-bit integer
GGLL__SSHHOORRTT           signed 16-bit integer
GGLL__UUNNSSIIGGNNEEDD__IINNTT    unsigned 32-bit integer
GGLL__IINNTT             32-bit integer
GGLL__FFLLOOAATT           single-precision floating-point
GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__33__33__22unsigned 8-bit integer
GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__22__33__33__RREEVVunsigned 8-bit integer with reversed component ordering
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55unsigned 16-bit integer
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55__RREEVVunsigned 16-bit integer with reversed component ordering
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44unsigned 16-bit integer
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44__RREEVVunsigned 16-bit integer with reversed component ordering
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__55__55__11unsigned 16-bit integer
GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__11__55__55__55__RREEVVunsigned 16-bit integer with reversed component ordering
GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88unsigned 32-bit integer
GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88__RREEVVunsigned 32-bit integer with reversed component ordering
GGLL__UUNNSSIIGGNNEEDD__IINNTT__1100__1100__1100__22unsigned 32-bit integer
GGLL__UUNNSSIIGGNNEEDD__IINNTT__22__1100__1100__1100__RREEVVunsigned 32-bit integer with reversed component ordering
_


The rasterization described so far assumes pixel zoom factors of 1. If
ggllPPiixxeellZZoooomm is used to change the $x$ and $y$ pixel zoom factors, pixels are converted to fragments as follows. If ($x sub r$, $y sub r$) is the current raster position, and a given pixel is in the $n$th column and $m$th row of the pixel rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners at

($x sub r ~+~ zoom sub x^ n$, $y sub r ~+~ zoom sub y^ m$)

($x sub r ~+~ zoom sub x^ (n ~+~ 1)$, $y sub r ~+~ zoom sub y^ ( m ~+~ 1 )$)

where $zoom sub x$ is the value of GGLL__ZZOOOOMM__XX and $zoom sub y$ is the value of GGLL__ZZOOOOMM__YY.

NOTES

GGLL__BBGGRR and GGLL__BBGGRRAA are only valid for _f_o_r_m_a_t if the GL version is 1.2 or greater.

GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__33__33__22, GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__22__33__33__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__55__55__11, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__11__55__55__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__1100__1100__1100__22, and GGLL__UUNNSSIIGGNNEEDD__IINNTT__22__1100__1100__1100__RREEVV are only valid for _t_y_p_e if the GL version is 1.2 or greater.

ERRORS

GGLL__IINNVVAALLIIDD__VVAALLUUEE is generated if either _w_i_d_t_h or _h_e_i_g_h_t is negative.

GGLL__IINNVVAALLIIDD__EENNUUMM is generated if _f_o_r_m_a_t or _t_y_p_e is not one of the accepted values.

GGLL__IINNVVAALLIIDD__OOPPEERRAATTIIOONN is generated if _f_o_r_m_a_t is GGLL__RREEDD, GGLL__GGRREEEENN, GGLL__BBLLUUEE, GGLL__AALLPPHHAA, GGLL__RRGGBB, GGLL__RRGGBBAA, GGLL__BBGGRR, GGLL__BBGGRRAA, GGLL__LLUUMMIINNAANNCCEE, or GGLL__LLUUMMIINNAANNCCEE__AALLPPHHAA, and the GL is in color index mode.

GGLL__IINNVVAALLIIDD__EENNUUMM is generated if _t_y_p_e is GGLL__BBIITTMMAAPP and _f_o_r_m_a_t is not either GGLL__CCOOLLOORR__IINNDDEEXX or GGLL__SSTTEENNCCIILL__IINNDDEEXX.

GGLL__IINNVVAALLIIDD__OOPPEERRAATTIIOONN is generated if _f_o_r_m_a_t is GGLL__SSTTEENNCCIILL__IINNDDEEXX and there is no stencil buffer.

GGLL__IINNVVAALLIIDD__OOPPEERRAATTIIOONN is generated if ggllDDrraawwPPiixxeellss is executed between the execution of ggllBBeeggiinn and the corresponding execution of ggllEEnndd.

GGLL__IINNVVAALLIIDD__OOPPEERRAATTIIOONN is generated if _f_o_r_m_a_t is one GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__33__33__22, GGLL__UUNNSSIIGGNNEEDD__BBYYTTEE__22__33__33__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55, of GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__66__55__RREEVV and _f_o_r_m_a_t is not GGLL__RRGGBB.

GGLL__IINNVVAALLIIDD__OOPPEERRAATTIIOONN is generated if _f_o_r_m_a_t is one of GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__44__44__44__44__RREEVV, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__55__55__55__11, GGLL__UUNNSSIIGGNNEEDD__SSHHOORRTT__11__55__55__55__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88, GGLL__UUNNSSIIGGNNEEDD__IINNTT__88__88__88__88__RREEVV, GGLL__UUNNSSIIGGNNEEDD__IINNTT__1100__1100__1100__22, or GGLL__UUNNSSIIGGNNEEDD__IINNTT__22__1100__1100__1100__RREEVV and _f_o_r_m_a_t is neither GGLL__RRGGBBAA nor GGLL__BBGGRRAA.

ASSOCIATED GETS

ggllGGeett with argument GGLL__CCUURRRREENNTT__RRAASSTTEERR__PPOOSSIITTIIOONN
ggllGGeett with argument GGLL__CCUURRRREENNTT__RRAASSTTEERR__PPOOSSIITTIIOONN__VVAALLIIDD

SEE ALSO

ggllAAllpphhaaFFuunncc((33GG)), ggllBBlleennddFFuunncc((33GG)), ggllCCooppyyPPiixxeellss((33GG)), ggllDDeepptthhFFuunncc((33GG)), ggllLLooggiiccOOpp((33GG)), ggllPPiixxeellMMaapp((33GG)), ggllPPiixxeellSSttoorree((33GG)), ggllPPiixxeellTTrraannssffeerr((33GG)), ggllPPiixxeellZZoooomm((33GG)), ggllRRaasstteerrPPooss((33GG)), ggllRReeaaddPPiixxeellss((33GG)), ggllSScciissssoorr((33GG)), ggllSStteenncciillFFuunncc((33GG))